
Physics Placement Exam: Classical Mechanics and Electromagnetism
27-Aug-24

Problem 1: Consider the motion of a point particle of mass m subject to the central potential

V (r) = −α
r
− k log r , α > 0 , k > 0 . (1)

(a) Show that there is a critical value Lc for the angular momentum, above which there are no circular
orbits. Compute Lc.

(b) How many circular orbits are there for L < Lc?

(c) Sketch a plot of the effective potential, for L > Lc and for L < Lc.

(d) In the two cases, discuss qualitatively the possible orbits as a function of their energy E.
“Discuss qualitatively” means: characterize the orbits as bound or unbound — no need to provide
more details or explicit formulas; just refer to plot features.

Problem 2: Consider two particles on a line with Lagrangian

L = 1
2(ẋ21 + ẋ22)−

(
ex2 + e−x1 + ex1−x2

)
. (2)

The potential energy is minimized at x1 = x2 = 0. By expanding L to quadratic order in x, find the
frequencies of small oscillations around this minimum.

Problem 3: Let x be the position of a particle on a line and p its canonically conjugate momentum,
so the Poisson bracket of two functions A,B on phase space is {A,B} = ∂xA∂pB − ∂pA∂xB, and the
Hamilton equations imply Ȧ = {A,H}. Consider the Hamiltonian

H ≡ p2

2
+

λ

2x2
. (3)

and define moreover

D ≡ xp , K ≡ x2

2
. (4)

(a) Check that the Poisson brackets of H, D and K take the form

{D,H} = c1H , {K,H} = c2D , {K,D} = c3K (5)

where c1, c2, c3 are λ-independent constants. Find these constants.

(b) Using the relations (5) and Ȧ = {A,H}, find H(t), D(t), and K(t) in terms of their t = 0 initial
values H0, D0 and K0. Then use this together with the definitions (4) to read off the solutions for
x(t) and p(t) in terms of x0 and p0.
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Problem 4: The potential on the surface of a sphere (radius R) is given by
V (r = R) = V0 cos 3θ.
a) Find the potential inside and outside the sphere.
b) What is the total charge of the sphere?

Hint: Use trigonometric identities to express the potential entirely in powers of cos θ

Problem 5:

Consider an infinite wire with cross sectional radius a and conductivity σ. A current I flows down the
wire in the ẑ direction. The electric field inside the wire is ~E =

(
I

πa2σ

)
ẑ and points along the direction of

the current, while the magnetic field at the surface of the wire is ~B = µ0I
2πa φ̂ (here φ̂ wraps around the

wire according to the right hand rule along the direction of I).

a) What is the magnitude and direction of the Poynting flux ~S at the surface of the wire?

b) Consider an imaginary closed cylindrical surface S that just encloses a wire (see above figure).
The integral of the Poynting vector ~S over this surface is given by

∮
~S · ~dA. What are the units of this

integral? (given the simplest possible units) And what does this surface integral represent physically?

c) For the surface S, it is possible to work out the value of the surface integral
∮
~S · ~dA in two different

ways: (1) by computing it directly from ~E and ~B; or (2) by knowing what the integral represents
physically and simply writing down an expression for that thing.
Work out the value of

∮
~S · ~dA using one of these methods, and state which method you are using.

Your final answer must be in terms of just those variables given in the problem.

Problem 6: A point charge q, of mass m, is attached to a spring of constant k. At time t = 0 it is
given a kick, so its initial energy is U0 = 1

2mv
2
0. Now it oscillates, gradually radiating away this energy.

Assume the radiation damping is small, so you can write the equation of motion as

ẍ+ γẋ+ ω2
0x = 0

and the solution as
x(t) =

v0
ω0

e−γt/2 sinω0t ,

with ω0 =
√

k
m , γ = ω2

0τ and γ � ω0 (drop γ2 in comparison to ω2
0, and when you average over a

complete cycle, ignore the change in e−γt).

a) Determine the value of τ in terms of the other parameters in the problem.

b) Confirm that the total energy radiated is equal to U0.
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Potentially Useful Equations and Definitions

Trigonometric identities: cos(A+B) = cosA cosB−sinA sinB , sin(A+B) = sinA cosB+sinB cosA

Cylindrical coordinates: x = s cosφ, y = s sinφ, z = z, s =
√
x2 + y2

∇t =
∂t

∂s
ŝ +

1

s

∂t

∂φ
φ̂+

∂t

∂z
ẑ

∇ · v =
1

s

∂(svs)

∂s
+

1

s

∂vφ
∂φ

+
∂vz
∂z

∇× v =

[
1

s

∂vz
∂φ
−
∂vφ
∂z

]
ŝ +

[
∂vs
∂z
− ∂vz

∂s

]
φ̂+

1

s

[
∂(svφ)

∂s
− ∂vs
∂φ

]
ẑ

∇2t =
1

s

∂

∂s

(
s
∂t

∂s

)
+

1

s2
∂2t

∂φ2
+
∂2t

∂z2

Spherical coordinates: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ .

∇t =
∂t

∂r
r̂ +

1

r

∂t

∂θ
θ̂ +

1

r sin θ

∂t

∂φ
φ̂

∇ · v =
1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θ vθ) +

1

r sin θ

∂vφ
∂φ

∇× v =
1

r sin θ

[
∂(sin θ vφ)

∂θ
− ∂vθ
∂φ

]
r̂ +

1

r

[
1

sin θ

∂vr
∂φ
−
∂(rvφ)

∂r

]
θ̂ +

1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

]
φ̂

∇2t =
1

r2
∂

∂r

(
r2
∂t

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂t

∂θ

)
+

1

r2 sin2 θ

∂2t

∂φ2

Solutions when there is no φ dependence:

Φ(r, θ) =
∞∑
l=0

[
Al r

l +
Bl
rl+1

]
Pl(cos θ) satisfies ∇2Φ = 0 .

P0(u) = 1 , P1(u) = u , P2(u) =
3

2
u2 − 1

2
, P3(u) =

5

2
u3 − 3

2
u

∫ 1

−1
Pm(u)Pn(u) du =

2

2n+ 1
δm,n
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Electrostatic energy (W ):

Discrete charges:

W =
1

8πε0

n∑
i=1

n∑
j 6=i

qiqj
rij

Continuous charge distribution:

W =
ε0
2

∫
E(r) ·E(r) d3r =

1

2

∫
ρ(r)Φ(r) d3r

Field from magnetic dipole:

B(r) =
µ0
4π

3m · r̂−m

r3

Energy density and flux, momentum density:

u =
1

2
ε0 E ·E +

1

2µ0
B ·B , S =

1

µ0
E×B , g = ε0(E×B)

Speed of light, impedance of the vacuum:

µ0ε0 =
1

c2
, µ0c = 377 Ω

Ohm’s Law: ~J = σ ~E

Larmor formula:

P =
2

3

q2

4πε0c3
a2
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